写作指南 | Writing Guide
| 简体中文 | English |
简体中文
这份写作指南是为了配合 README 里提到的项目目标:
把飞快冒出来的 AI 术语,尽量讲得「清晰、克制、好懂」,同时又对实务有帮助。
如果你在写或修改某个词条,可以把它当成一份「小抄」,随时翻一眼。
写在前面:写给谁看?
- 默认读者对这个词「只听过名字」,甚至连中文是什么都不确定;
- 可以假设 TA 对 AI/LLM 感兴趣,但不一定是某个子领域的专家;
- 你可以用专业词汇,但最好配一层「普通人能懂」的解释。
结构建议:一篇词条可以怎么长出来
不是必须完全照搬,但可以参考下面这个顺序:
- 一句话概览(对应
brief字段)- 用 1–2 句说清楚「它是什么」+「最常出现的场景」;
- 避免把 marketing slogan 写进来,尽量用事实性的描述。
- 背景 / 为什么会有这个东西
- 说明它是为了解决哪类问题、和什么时代背景有关;
- 可以简单提到是在哪些论文 / 产品 / 场景里先被提出来的。
- 核心概念 / 怎么工作的
- 用图、例子或分点说明关键机制,而不是一大段密集术语;
- 如果有公式或更细的技术细节,可以放在「深入理解」小节。
- 和哪些概念容易混淆
- 指出几个常被混用或容易搞混的词,说明相同点和差异;
- 如果站内已经有对应词条,尽量加上链接,方便跳转。
- 典型用法 / 实践提醒
- 在产品、系统或论文里,别人是怎么用这个概念的;
- 对「新手常见误用」「需要注意的边界」做一点点提醒。
- 延伸阅读
- 选几篇你觉得值得读的公开资料:官方文档、论文、博客等;
- 不需要列很多,重点是「有代表性」「容易点进去继续学」。
写作风格:清晰、克制、可验证
- 优先回答「是什么」「解决什么问题」「在什么语境下常被提起」;
- 可以使用比喻,但要避免特别依赖行话的「圈内梗」;
- 尽量避免纯市场宣传式语气,不替任何产品或框架站队;
- 如果是个人判断或经验观点,建议标注为「经验观察」「个人理解」;
- 如引用论文、博客或文档,附上链接,方便读者继续深入。
如何利用站内结构和评论区
- 在正文里提到其它术语时(例如在 RAG 里提到 embedding、retriever),尽量链接到站内对应词条,帮读者「顺着概念图逛一圈」;
- 不需要把所有争论一次写完——可以把一些细节、不同看法留给评论区;
- 欢迎在评论区分享你的实践经验、踩坑记录、对定义的异议,这些讨论会和正文一起,逐渐变成这份「公共笔记本」的一部分;
- 读者可以顺着评论里的 GitHub 头像点进你的主页,看到你在做什么项目——这也是这个项目希望顺带带来的那一点点「社交」。
不知道从哪里开始写?
- 只补一个更清晰的
brief(一句话解释)也很有价值; - 或者先给正文加 1–2 个更贴切的例子、对比或外部链接;
- 之后你可以在 Review 或评论区里,和别人一起慢慢把这篇词条打磨得更完整。
没有哪一篇是「一稿定版」的,重要的是先把你当下的理解写下来。
English
This guide supports the writing goals described in the README:
explaining fast-evolving AI terminology in a way that is clear, measured, and actually useful for people trying to understand what is going on.
You can treat this as a quick reference whenever you add or revise an entry.
Audience: who are we writing for?
- Assume the reader has “heard the term before” but may not recall what it really means;
- They are curious about AI/LLM but not necessarily experts in any subfield;
- It is fine to use technical language, but pair it with explanations that a motivated non-expert can follow.
Suggested structure for an entry
You do not have to follow this strictly, but it is a good default:
- One-sentence overview (matches
brief)- In 1–2 sentences, say what it is and where it shows up most often;
- Avoid marketing slogans—prefer factual, descriptive language.
- Background / Why this exists
- Explain what problem it was meant to solve and in which context it appeared;
- Optionally mention key papers, products, or milestones where it became prominent.
- Core idea / How it works
- Use diagrams, examples, or bullet points to explain the mechanism;
- Keep heavy formulas or deep technical details in a later “deep dive” section.
- Related and easily confused concepts
- Call out a few terms that are often conflated and clarify similarities/differences;
- When there are existing entries in this glossary, link to them.
- Typical usage / Practical notes
- Show how the term appears in real systems, products, or research;
- Highlight common misuses or edge cases that practitioners should be aware of.
- Further reading
- Provide a small set of high-quality public resources: docs, papers, blog posts;
- Focus on sources that are both representative and approachable.
Tone and style
- Prioritize answering what it is, what problem it solves, and in which context it shows up;
- Use analogies where helpful, but avoid insider jokes or jargon-heavy language;
- Stay neutral—do not turn the entry into marketing for any specific product or framework;
- When sharing personal opinions or experience, label them as such;
- Include links to public references so interested readers can dive deeper.
Using internal links and comments
- When you mention other terms (e.g., “embedding”, “retriever” inside a RAG entry), link to their entries to help readers explore the concept graph inside the site;
- You do not need to settle every debate inside the main body—let some of the nuance live in the comments;
- Use the comments section to share field experience, gotchas, or alternative interpretations—over time, these discussions become part of the shared knowledge;
- Readers can click through GitHub avatars in comments to discover each other’s profiles and projects, which is a small but intentional “social” aspect of this glossary.
If you are not sure where to start
- Improving just the
briefline for a term is already a meaningful contribution; - Adding one concrete example, a clearer comparison, or a good reference link is also great;
- You can always refine the entry together with others during review or in the comments.
There is no such thing as a perfect first draft—the important part is to capture your current understanding and iterate.